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Introduction

» Scientists, policy-makers, and practitioners care about different kinds of
study validity
» Internal validity: findings are informative about the population under study
> estimand: Sample Average Treatment Effect (SATE)
> External validity: findings are informative about the population of interest
» estimand: Target Average Treatment Effect (TATE) ; Population ATE (PATE)

» Experiments are a corner solution that prioritizes Internal over External
validity (Egami and Hartman 2022)
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Design based solutions: design to balance in target population (Phan et al.
2021) or balanced sampling (Cytrynbaum 2021)

> Limited feasibility in regime with many concurrent experiments

This project: Framework and package for model-based solutions to bridging
(generalizing or transporting) causal estimates to new populations
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Abstract

In the past decade, behavioural science has gained influence in policymaking but
suffered a crisis of confidence in the replicability of its findings. Here, we describe a
nascent heterogeneity revolution that we believe these twin historical trends have
triggered. This revolution will be defined by the recognition that most treatment
effects are heterogeneous, so the variation in effect estimates across studies that
defines the replication crisis is to be expected as long as heterogeneous effects are

studied without a systematic approach to sampling and moderation. When studied

3/18



Data and Estimands

» Data: Dl = (X“ Si, SZA“ Sl}/;)i\;l where
» covariates X; € RP?,
> treatment A; € A:={0,...,K},
» outcomey; € R,
» selectionindicator S; € {0,1}
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Observe (X;, A;, Y;)M, for observations with S; = 1
(henceforth the study sample S;)
Observe (X;). v, for observations with S; = 0
(henceforth the target sample Sy).
The overall sampleis S := S; U Sp.

Two kinds of missing data

Estimands
Generalizability

E [Ya,S:I}
Transportability

E[Y*S = 0]

Lets us construct causal
contrasts for any pair
a,a € A
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Reasoning about extrapolation bias

> Let X, po(x),b € {s, ¢} denote Support and Distribution
of covariates in study and target. Bias from naive
extrapolation is

TATE - SATE = >~ pi(x)7:(x) — pa(¥)7a(x)

= Z (pe(x) = ps(x)) 7(x)
X)
=D plx ( %) 1) 7

zE€Xy Strata Size —r—/ Heterogeneity
Imbalance
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Reasoning about extrapolation bias

> Let X, py(x), b € {s, 1} denote Support and Distribution ~ B1as contributions

of covariates in study and target. Bias from naive > Imbalance in-
extrapolation is efietflt'f?o)dliyl(f)\g strata
X S.L T(X
TATE - SATE = Z (%) 7(x) — ps(x)Ts(X) > Failure of overlap:
TEX, ps(x) = 0 but
; ps(x) >0
ZZEQQ%QJ—pJ@)ﬂX) » Heterogeneity model
red 9 instability
7s(x) # 7i(x)
o Z ps ( ) 1) .T(X>, DRO problem (Sahoo,
eeXy Strata Size —z—/ Heterogeneity Lei, and Wager 2022;
Imbalance Jeong and Namkoong

2020)
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3. Overlap
3.1 Treatmentoverlap: 0 < Pr(A=a|X=x,5=1)<1
3.2 Selectionoverlap: 0 < Pr(S=1X=x) < 1
4. Selection
41 YY ...,Y% 1L S|X = x. Ignorability of Selection.
42 E[Y|A,X,S =1] =E[Y|A,X, S = 0]. The outcome model is stable across
S strata.

Under A1,2,3,4.1, the generalization effect is identified. (Dahabreh, Robertson, Tchetgen, et al.
2019; Bia, Huber, and Lafférs 2020)

Under Al,2,3,4.2, the transportation effect is identified. (Dahabreh, Robertson, Steingrimsson,
et al. 2020; Josey et al. 2021)
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Estimator Structure
Augmented Augmented IPW influence function (uncentered)

Imputation Reweighted Residuals
= p X)) + wi o (Yi— p (X))
~— ~—~
Outcome Model ~ 5i/p(X;)  Ta,=a/7(X;)
Sel Wt Prop Wt
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Estimator Structure
Augmented Augmented IPW influence function (uncentered)

Imputation Reweighted Residuals
= p X)) + wi o (Yi— p (X))
—— ~—~ ~—~
Outcome Model ~ Si/p(X;)  Ta,—a/m"(X;)
Sel Wt Prop Wt

» Difference between )* and ) estimates causal contrasts (Robins et al
1994, Newey 1994, Hahn 1998, Cattaneo 2010)

» Estimation: put hats on - Nuisance functions estimated by flexible
nonparametric regression (L1/L2 reg, random forest, boosting) using
cross-fitting

» Construct observation level influence function (=: doubly robust score)

» Average over target sample for point estimate, standard deviation for

confidence interval
7/18



Estimators

Generalization

SLE[Y|A=a,S=1,X]P(X)

Transportation
> EY]|A=4qa,5=1,X]P(X|S=0)

L5 e (Xy)
1 S  la—q v
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Estimators

Generalization Transportation
> E[Y|A=a,S =1,X] P(X) > E[Y|][A=4a,5=1,X]P(X|S=0)
oM | 53 A(X) 137 i1 = S (Xa)
ISW | X a5t wRs Y D i e S I
AISW | 152 (Xa) + sty mety (Vi = A0 (X)) | & 55 gty (1= S0an (Xa) + FG000 g (v; — (X)) )

» Outcome modelling (OM), Inverse Selection Weighting (ISW), and Augmented
Inverse Selection Weighting (AISW)

» Target population
» Implemented in ateGT
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Balancing weights

» goal for selection weights: balance
covariates across study and target

» Inverse propensity weighting is indirect: fit
Pr (S = 1|X), theninvert

» This inversion dramatically inflates
errors when selection weights are
small

»> Requires individual level covariates
X, for target population
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Balancing weights

» goal for selection weights: balance
covariates across study and target

» Inverse propensity weighting is indirect: fit H}}“ = Z f() st
Pr (S = 1|X), then invert €S
Balance » _ 7yic,(Xij) = > cii(Xy)
> This inversion dramatically inflates €85 ictarget
errors when selection weights are Simplex Z vi=landy >0V{i:iec S}
small

R . . €S
»> Requires individual level covariates

X, for target population . .
getpop Dual is easy to solve for certain fs (L2,

» Alternatively calibrate a set of weights that entropy) as regularized propensity score
balances covariate distributions (Wang and Zubizarreta 2019). Implemented
Z Yic (Xij) = Z i (X5) in ateCAL
€S ictarget Target moments
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Incorporating Surrogate Outcomes

» Suppose further that we observe a
short-run outcome Z; for both Sy, S, but
outcome of interest Y; only for S;

» This could be because units arrive

sequentially and ‘mature’ at some T
period; S are early adopters
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sequentially and ‘mature’ at some T
period; S are early adopters

» Intermediate outcome Z is said to be a
‘surrogate’ for the long-term outcome

> Literature on estimation of long-term
treatment effects typically relies on
variations of strong surrogacy assumption
Y 1 A|Z (Athey et al. 2016; Chen and
Ritzwoller 2021)

» Under analogues of A1-4, Kallus and Mao

(2022) derive an influence function for the
generalization effect with surrogates

b =pl (X,)+
Yi wj
~— ~—
Si/p(X;) 1a :,/TFG(X-)

( (“)(Z X;) — (“)(X-)) -

(vi - 9 x0)) +

» Second residual is information gained from

incorporating surrogate outcome in
prediction of Y
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Characterizing Sensitivity via OVB

Identification hinges on A4.1 (selection
ignorability).

Motivates our estimation strategy via
reweighting ~;

Suppose there is an omitted variable U
that makes A4.1 hold.

True (u, (7,7) =: «) and feasible

(us, (m,7s) =t ) nuisance functions
(Chernozhukov et al. 2022) where former
includes U as covariate
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reweighting ~;

Suppose there is an omitted variable U
that makes A4.1 hold.

True (u, (7,7) =: «) and feasible

(us, (m,7s) =t ) nuisance functions
(Chernozhukov et al. 2022) where former
includes U as covariate

Omitted Variables Bias = Covariance
between regression error (u — ) and
Riesz Representer Error (oo — avg)

)= S (M i)

p(Xi) \m(Xs) (X,
. Si la=a _ La=ar
oD.U) = p(Xi, U;) (W“(Xi) Wa/(Xi)>

Squared Bias can be bounded as
B? = $2C%.C3 where

> 52 :=E(Y — us)?Ea? (identifiable)
> Ci=nR:

o moti— g - conjectured proportion of
residual variance in outcome explained by

confounders
Ci=(01-R2_,.)/R:.,, : conjectured
proportion of residual variance in long RR

explained by confounders
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Simulation Study

» Covariates X;,..., X;0 ~ U[-1,1]
» Data Generating Process
> A; ~ Bernoulli (0.5)
> Y;* = YO(XZ) + AZT(Xz)
> Y =Y w.p. p(X), else missing
» For non-trivial functions p(X), there is selection bias and SATE is biased for
E [m(X)]
» Vary functional form of
> Y0(X) (Outcome Model)
» p(X) (Selection Model)

12/18



RMSE

o000
oLhwns

Root Mean Squared Error

Selection Correct,
Outcome Misspecified

I

Selection Misspecified,
Outcome Correct

00000
oW

7‘

Selection Misspecified,
Outcome Misspecified

7’}

09000
oNvbo®

1e+03 1e+04 1e+05

MAD

ocococoo
ok oo

Bias
- aisw —®- isw —®- naive —*- om

Selection Correct,
Outcome Misspecified

Selection Misspecified,
Outcome Correct

Selection Misspecified,
Outcome Misspecified

’/

1e+03 1e+04 1e+05

Coverage

Selection Correct,
Outcome Misspecified

M—oﬁ

Selection Misspecified,
Outcome Correct

g ey

o

Selection Misspecified,
Outcome Misspecified

1e+03 1e+04 1e+05



Implementation in causalTransportR

Main function: ateGT (ATE
Generalization or
Transportation)

Input vectorsy, a, sof
outcome, treatment, and
selection wherey, aare
missing fors = 0

Matrix of X of covariates (no
missings)

Additional arguments for
nuisance function estimation

ateGT(
Y.
a,
X,
s = NULL,
treatProb = NULL,
Z = NULL,
nuisMod = c("rlm", "rf"),
target = c("generalize", "transport", "insample"),
estimator = c("AISW", "ISW", "OM", "CW", "ACW"),
hajekize = FALSE,
separateMus = TRUE,

glmnet_lamchoice = "lambda.min",
glmnet_alpha = 1,
glmnet_rho_family = "binomial",
glmnet_pi_family = "binomial",
glmnet_mu_family = "gaussian",
glmnet_parl = FALSE,

grf_tuneRf = "none",

noi = FALSE
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Conclusion

» Proposes a multi-treatment framework for causal generalization and
transportation
» provide a performant computational implementation for it in
causalTransportR::ateGT
> calibrated generalization for when only summary statistics are available for
target (ateCAL)
» poststratification weights using fast fixed effects regressions (ateGTreg)
» Future work: more work on sensitivity analyses
» Partial identification for generalization using marginal sensitivity model (Nie,
Imbens, and Wager 2021) or Proportion with confounding (Kennedy and
Bonvini 2021)
> Estimate how different the population needs to be from the experimental
sample to explain away the effect (Devaux and Egami 2022)
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Thanks!

software: https://github.com/apoorvalal/causalTransportR
email: apoorval@stanford.edu
website: apoorvalal.github.io
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